
Accumulator-Passing Style



One of the major design goals of the Scheme language was to make it 
efficient.  One key aspect of this is that Scheme internally converts all 
tail-recursions into loops.  This needs some explanation.



First, a function is tail-recursive if the last thing it does is recurse (and 
return the result of the recursion).  For example, here are two 
versions of the factorial function:

(define fact1 (lambda (n)
(cond

[(= 0 n) 1]
[else (* n (fact1 (- n 1)))])))

(define fact2 
(letrec ([fact-a (lambda (n acc)

(cond
[(= 0 n) acc]
[else (fact-a (- n 1) (* n acc))]))])

(lambda (n) (fact-a n 1))))



(define fact1 (lambda (n)
(cond

[(= 0 n) 1]
[else (* n (fact1 (- n 1)))])))

fact1 is not tail recursive: in the else line of the cond expression we 
compute (fact1 (- n 1)) and then multiply this result by n.



(define fact2 
(letrec ([fact-a (lambda (n acc)

(cond
[(= 0 n) acc]
[else (fact-a (- n 1) (* n acc))]))])

(lambda (n) (fact-a n 1))))

fact2 is tail recursive.  (fact2 n) just returns (fact-a n 1), and if n>0 fact-a just 
returns the result of its recursion: (fact-a (- n 1) (* n acc)).  For example, 
(fact2 4) returns (fact-a 4 1) 

= (fact-a 3 4)
= (fact-a 2 12)
= (fact-a 1 24)
= (fact-a 0 24)
= 24



(define fact2 
(letrec ([fact-a (lambda (n acc)

(cond
[(= 0 n) acc]
[else (fact-a (- n 1) (* n acc))]))])

(lambda (n) (fact-a n 1))))

You can see how a tail-recursion could be turned into a loop: we just 
need variables that represent the function's arguments. These get 
updated each time around the loop until the base case is reached, 
and the base-case tells us what to return. 



There are two strategies for trying to write tail-recursions.  One of 
these is Accumulator-passing style, which adds an extra parameter 
acc onto the function.  We accumulate the answer in this 
accumulator.  Since the natural expression of most functions doesn't 
include this parameter, we usually write the tail-recursion as a helper 
function.  fact2 illustrates this:

(define fact2 
(letrec ([fact-a (lambda (n acc)

(cond
[(= 0 n) acc]
[else (fact-a (- n 1) (* n acc))]))])

(lambda (n) (fact-a n 1))))



Here are some examples of accumulator-passing style:

; (sum vec) adds together the elements of vec:
(define sum

(letrec ([sum-a (lambda (vec acc)
(cond

[(null? vec) acc]
[else (sum-a (cdr vec) (+ (car vec) acc))]))])

(lambda (vec) (sum-a vec 0))))



; (reverse lat) reverses its argument, as you might expect:
(define reverse

(letrec ([reverse-a (lambda (lat acc)
(cond

[(null? lat) acc]
[else (reverse-a (cdr lat) (cons (car lat) acc))]))])

(lambda (lat) (reverse-a lat null))))



Sometimes this isn't so easy.  Here's a version of (rember x lat), 
which removes the first instance of atom x from lat:

(define rember
(letrec ([rember-a (lambda (x lat acc)

(cond
[(null? lat) (h acc null)]
[(eq? x (car lat)) (h acc (cdr lat))]
[else (rember-a x (cdr lat) (cons (car lat) acc))]))]

[h (lambda (lat1 lat2)  ; h reverses lat1 onto lat2
(cond

[(null? lat1) lat2]
[else (h (cdr lat1) (cons (car lat1) lat2))]))])

(lambda (x lat) (rember-a x lat null)))) 



The other strategy for producing tail recursions is Continuation-
passing style.  This uses a concept called a continuation which we 
will discuss at the end of the semester.


